A Numerical Model for Simulation of Combined Electroosmotic and Pressure Driven Flow in Microdevices
نویسندگان
چکیده
With the development of microfabrication technologies, microdevices are becoming more and more important to engineers examining microscale systems, especially those for chemical or biological analysis. Simulation of fluid flows through various microdevices will facilitate engineers to derive better design for controlling and handling fluid flows through microdevices. Present paper presents a numerical model to simulate combined electroosmotic and pressure driven flow. The model is validated by comparing numerical results against the corresponding analytical solution and very good match between data and model is obtained. To illustrate the application of developed model, fluid flow in a three-dimensional microchannel is simulated.
منابع مشابه
Electroosmotic Flow Control in Complex Microgeometries
Numerical simulation results for pure electroosmotic and combined electroosmotic/pressure driven Stokes flows are presented in the cross-flow and Y-split junctions. The numerical algorithm is based on a mixed structured/unstructured spectral element formulation, which results in high-order accurate resolution of thin electric double layers with discretization flexibility for complex engineering...
متن کاملTwo-fluid Electrokinetic Flow in a Circular Microchannel (RESEARCH NOTE)
The two-fluid flow is produced by the combined effects of electroosmotic force in a conducting liquid and pressure gradient force in a non-conducting liquid. The Poisson-Boltzmann and Navier-Stokes equations are solved analytically; and the effects of governing parameters are examined. Poiseuille number increases with increasing the parameters involved. In the absence of pressure gradient, the ...
متن کاملCombined mixed convection and radiation simulation of inclined lid driven cavity
This paper presents a numerical investigation of the laminar mixed convection flow of a radiating gas in an inclined lid-driven cavity. The fluid is treated as a gray, absorbing, emitting, and scattering medium. The governing differential equations including continuity, momentum and energy are solved numerically by the computational fluid dynamics techniques (CFD) to obtain the velocity and tem...
متن کاملApplying a Modified Two-Fluid Model to Numerical Simulation of Two-Phase Flow in the Membrane Chlor-Alkali Cells
In this study, gas evolution in a vertical electrochemical cell is investigated numerically with a modified two-fluid model. The mathematical model involves solution of separate transport equation for the gas and liquid phases with an allowance to inter-phase transfer of mass and momentum. The governing equations are discreted via the finite volume technique and then are solved by ...
متن کامل-Implementation of lattice Boltzmann method to study mixing reduction in isothermal electroosmotic pump with hydrophobic walls
The aim of the present work is to analyze the accuracy and to extend the capability of lattice Boltzmann method in slip EOF; a phenomenon which was previously studied by molecular dynamics and less considered by LBM. At the present work, a numerical experiment on boundary conditions of slip velocity is performed and the proportionality of slip with shear stress in electroosmotic pump is proved....
متن کامل